Sky DSP logo  
Index    Chapter 1    Chapter 2    Chapter 3    Conclusion    Appendix    Matlab Code    Audio Demo   
Home
Publications
Links
Glossary

 


Appendix

Bibliography

By Eric Lawrey, Copyright 1997 
  1. S. Swales, M. Beach, "Third Generation Wireless Networks", University of Bristol, Future Communication Systems course, April 1994.

  2. T. Rappaport, "Wireless Communications, Principle & Practice", IEEE Press, Prentice Hall, pp. 3, 1996.

  3. I. McKenzie, "Second Generation", Global Communications, pp. 26-30, First Quarter 1990.

  4. B. Leff, "Making sense of wireless standard and system designs", Microwaves & RF, pp. 113-118, February 1994.

  5. J. Scourias, "Overview of the GSM Cellular System, Extended Abstract", University of Waterloo, http://ccnga.uwaterloo.ca/~jsouria/GSM/trio.html, August 1997.

  6. T. S. Rappaport, "Wireless Communications Principles & Practice", IEEE Press, New York, Prentice Hall, pp. 399-422, 1996.

  7. T. Bell, J. Adam, S. Lowe, "Communications", IEEE Spectrum, pp. 30-41, January 1996.

  8. R. Comerford, "Interactive Media: An Internet reality", IEEE Spectrum, pp. 29-32, April 1996.

  9. R. S. Swain, "UMTS – A 21st Century System", http://www.vtt.fi/tte/nh/UMTS/umts.html, Sept 1995.

  10. G. Livingston, Third Generation Wireless Standards to Shape Internet’s Future", WirelessNOW, http://www.commow.com/3rd_Generation.html.

  11. M. Beach, "Propagation and System Aspects", University of Bristol, Future Communication Systems course, April 1994.

  12. P. Tipler, "Physics for Scientists and Engineers", 3rd Edition, Worth Publishers, pp. 464-468, 1991.

  13. C. Kikkert, "Digital Communication Systems and their Modulation Techniques", James Cook University, October 1995.

  14. D. Magill, "Spread-Spectrum Technology for Commercial Applications", Proceedings of the IEEE, Vol. 82, No. 4, April 1994.

  15. T. S. Rappaport, "Wireless Communications Principles & Practice", IEEE Press, New York, Prentice Hall, pp. 169-177, 1996.

  16. J. D. Gibson, "The mobile communications handbook", CRC Press, pp. 366-368, 1996.

  17. P. Donegan, "IS-95 CDMA becomes a world standard", http://www.cdg.org/magazines/spectrum/article4_int.html, 1997.

  18. D. Whipple, "North American Cellular CDMA", Hewlett-Parkard Journal, pp. 90-97, December 1993.

  19. D. Jiraud, "Broadband CDMA for Wireless Communications", Applied Microwave & Wireless, 1995.

  20. L. Geppert, "Semiconductor lithography for the next millennium", IEEE Spectrum, pp. 34, April 1996.

  21. E. Ifeachor, "Digital Signal Processing, A Practical Approach", Addison-Wesley Publisher Ltd., pp. 77, 1994.

  22. Stanford University, "SPIFFEE, a low power FFT processing chip", http://nova.stanford.edu/~bbass/spiffe.html, July 1997.


Appendix I. Acronyms

AMPS  Advanced Mobile Phone System

BER  Bit Error Rate. Probability of a data word being transmitted being in error.

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

COFDM Coded Orthogonal Frequency Division Multiplexing

DAB Digital Audio Broadcasting system

DS-CDMA Direct Sequence Code Division Multiple Access

EbNo Energy per bit to noise energy ratio (similar to SNR)

FDM Frequency Division Multiplexing

FDMA Frequency Division Multiple Access

FFT Fast Fourier Transform

FH-CDMA Frequency Hopping Code Division Multiple Access

FIR Finite Impulse Response Filter

GSM Global System for Mobile telecommunications

IFFT Inverse Fast Fourier Transform

IS-95 International Standard for the CDMA phone system developed by Qualcomm Inc.

LEO Low Earth Orbit satellite

OFDM Orthogonal Frequency Division Multiplexing

QAM Quadrature Amplitude Modulation

QPSK Quadrate Phase Shift Keying

RMS Root Mean Square value

SNR Signal to Noise Ratio

TDM Time Division Multiplexing

TDMA Time Division Multiple Access

UMTS Universal Mobile Telecommunications System

VCR Video Cassette Recorder


Appendix II. OFDM Guassian Noise Performance Prediction

The performance of any OFDM system using phase shift keying can be worked out using the Table 21 and Table 22.

SNR (dB) RMS Phase Error (degrees)θerror(rms)
0 63.63
2 44.85
4 34.25
6 26.65
8 20.92
10 16.5
12 13.05
14 10.34
16 8.198
18 6.505
20 5.164
22 4.1
24 3.256
26 2.586
28 2.054
30 1.631
32 1.296
34 1.029
36 0.8175
38 0.6494
40 0.5158
42 0.4097
44 0.3254
46 0.2585
48 0.2053
50 0.1631

Table 21 Expected Phase Error on a OFDM carrier at difference SNR levels


Z (number of standard deviations) BER
0 1
0.2 0.841481
0.4 0.689157
0.6 0.548506
0.8 0.423711
1 0.317311
1.2 0.230139
1.4 0.161513
1.6 0.109599
1.8 0.071861
2 0.0455
2.2 0.027807
2.4 0.016395
2.6 0.009322
2.8 0.00511
3 0.0027
3.2 0.001374
3.4 0.000674
3.6 0.000318
3.8 0.000145
4 6.34E-05
4.2 2.67E-05
4.4 1.08E-05
4.6 4.23E-06
4.8 1.59E-06
5 5.74E-07

Table 22 Expected Bit Error Rate for various noise levels. Z is the ratio of the maximum allowable phase angle / RMS phase error.


Appendix III. BER verses Eb/No for a CDMA system

Table 23 shows the bit error rate (BER) that would occur for a CDMA system that does not use forward error correction. The energy per bit to noise ratio (Eb/No), is the energy in the demodulated data bit, to the noise energy in the same bit. It is similar to the signal to noise ratio. The Eb/No is the effective signal to noise ratio of the demodulated, despread CDMA signal. Any noise, or interference in the radio channel is reduced by a factor equal to the process gain during despreading. The minimum allowable Eb/No that can be used for a particular system depends on the forward error correction scheme used, and the type of data being sent. Voice communications typically requires a BER better then ~1/100 or 0.01. This is assuming some forward error correction is used.

Eb/No (dB) BER
0 0.158655
2 0.104029
4 0.056495
6 0.023007
8 0.006004
10 0.000783
12 3.43E-05
14 2.7E-07

Table 23 Shows the Expected BER verses the energy per bit to noise ratio for a CDMA system

Next Matlab code
Copyright © 2001 Sky DSP